

UNIVERSIDADE FEDERAL DO MARANHÃO

FUNDAÇÃO Instituída nos termos da Lei nº 5.152, de 21/10/1996 – São Luís – Maranhão

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

Exame de Seleção

Mestrado e Doutorado em Física 2º Semestre de 2012

1ª Prova - 22/08/2012

Mecânica Clássica e Mecânica Quântica

Instruções

- Cada prova tem duração de 4 horas.
- Não se identifique no caderno de respostas.
- Não é permitido consulta a materiais bibliográficos que não o formulário entregue junto com a prova, o qual deve ser devolvido no final da prova.
- Não é permitida a utilização de equipamentos eletrônicos tais como celulares, calculadoras e outros.
- Responda a questão na folha indicada para cada questão.
- Caso seja necessário utilizar mais de uma página, solicite uma folha extra, registrando seu código e questão nos campos indicados.
- Para borrão, utilize as folhas indicadas como borrão no final de cada caderno de prova.
 É importante salientar que as respostas contidas nessas folhas não serão consideradas.

Candidato	

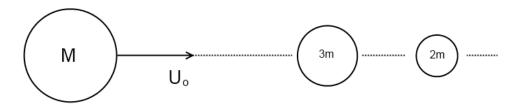
Candidato	
-----------	--

Q1 – Baseado nos conceitos da Mecânica Clássica, responda os itens abaixo:

- a) Existem colisões em que não se conserva momento linear? Quais os princípios de conservação que regem a colisão (não relativística) entre duas esferas maciças?
- b) Considere a colisão elástica unidimensional de duas esferas de massas m_1 e m_2 , em que v_{1i}, v_{2i} , são as velocidades dos corpos antes da colisão, e v_{1f}, v_{2f} são as velocidades dos corpos depois da colisão. Escreva as equações que levam à solução deste fenômeno. Não precisa resolvê-las.
- c) A solução exata das equações do item (b) leva aos seguintes resultados:

$$v_{1f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{1i} + \left(\frac{2m_2}{m_1 + m_2}\right) v_{2i}, \quad v_{2f} = \left(\frac{2m_1}{m_1 + m_2}\right) v_{1i} - \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{2i}.$$

A Figura abaixo ilustra três esferas maciças de massas iguais a $M=4m,\ 3m,\ 2m$, respectivamente, e dispostas ao longo do eixo ${\bf x}$. A esfera de massa M aproxima-se da segunda esfera com velocidade U_0 . A segunda e a terceira esfera estão inicialmente paradas. Os choques são todos elásticos. Quantas colisões ocorrem neste caso? Descreve-as em detalhes e com ilustrações. Calcule as velocidades finais de cada esfera neste caso.



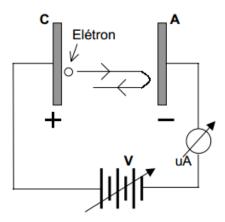
Q2 – Dois corpos em interação mútua possuem massa m_1 e m_2 , com coordenadas \vec{r}_1 e \vec{r}_2 no referencial do Laboratório, sendo $\vec{r}=\vec{r}_2-\vec{r}_1$ a distância relativa. No referencial do CM, vale: $m_1\vec{\mathbf{v}}_1'+m_2\vec{\mathbf{v}}_2'=0$.

- a) Sendo a interação potencial entre os corpos dada por U=U(r), com $r=|\vec{r}|$, podemos afirmar que a força entre os mesmos é central? Explique.
- b) Usando o conceito de centro de massa, determine a posição do CM do sistema, \vec{R} , em função de $m_1, m_2, \vec{r_1}, \vec{r_2}$.

Exame de Seleção – Programa de Pós-graduação em Física da UFMA – 2012.2

- c) Localize o referencial do CM em um diagrama de vetores, e encontre as posições \vec{r}_1' e \vec{r}_2' das partículas no referencial do CM em função de m_1, m_2, \vec{r} . Determine as velocidades das partículas no CM (\vec{v}_1', \vec{v}_2') em função de \vec{v}_1, \vec{v}_2 e $\vec{V}_{CM} = d\vec{R}/dt$.
- d) Seja $L = \frac{1}{2} m_1 \vec{\mathbf{v}}_1^2 + \frac{1}{2} m_2 \vec{\mathbf{v}}_2^2 U(r)$ a lagrangiana do sistema (no referencial do Lab). Escreva esta lagrangiana em função de $\vec{\mathbf{v}}_1', \vec{\mathbf{v}}_2'$ e \vec{V}_{CM} . Identifique as partes desta lagrangiana associada com a translação e com o movimento relativo.
- e) Escreva a parte do resultado (d) associada ao movimento relativo em termos de \dot{r} e da massa reduzida, μ . Discuta o resultado obtido. Qual a vantagem de escrever esta lagrangiana no referencial do CM?
- **Q3** Sabemos que a lagrangeana para dois corpos de massa $m_{\rm l}$ e $m_{\rm 2}$ em interação, no referencial do CM, é dada por $L_{\rm CM}=\frac{1}{2}\mu\left|\dot{\vec{r}}\right|^2-U(r)$, sendo $\dot{\vec{r}}=d\vec{r}/dt$, e μ a massa reduzida.
 - a) Escreva o vetor velocidade, $\vec{\mathrm{v}}=d\vec{r}/dt$, em coordenadas polares. Escreva $L_{\!\scriptscriptstyle C\!M}$ em função das coordenadas polares r,θ . Dados: $\dot{\hat{r}}=\dot{\theta}\hat{\theta}$.
 - b) Estas duas coordenadas são cíclicas? Por quê? Determine os momentos conjugados a r,θ . São constantes? É possível relacionar estes momentos conjugados com o momento angular?
 - c) Escreva o Hamiltoniano deste sistema em função de $\mu,\dot{r},r,l,U(r)$, onde $l=\left|\vec{L}\right|$, sendo \vec{L} o momento angular. Identifique o potencial efetivo.
- Q4 A emissão de elétrons por metais iluminados com luz de determinada frequência foi observada no final do século XIX por Hertz e Hallwachs. O fenômeno, que foi explicado mais tarde por Einstein e lhe rendeu o Nobel de Física de 1921, pelo qual são liberados elétrons de um pela ação da radiação se denomina efeito fotoelétrico ou emissão fotoelétrica.
 - a) Discuta as duas principais características desse fenômeno, relacionados á frequência de radiação eletromagnética incidente e à emissão eletrônica (números de elétrons emitidos)
 - b) A Figura a seguir mostra o experimento básico para observação do efeito fotoelétrico. Neste experimento, radiação é incidida sobre a superfície metálica C, provocando emissão de elétrons da placa. Se alguns desses elétrons atingirem a placa A, haverá

corrente no circuito. Note que, se a placa C está sob potencial positivo, o campo elétrico na região entre as placas será tal que o elétron será desacelerado, perdendo energia cinética ao longo do percurso entre as placas. Esboce um gráfico da corrente medida, a qual é chamada de corrente fotoelétrica, no amperímetro (uA) em função da diferença de potencial (quando o comprimento de onda da radiação é mantido fixo). Discuta os principais pontos desse gráfico.



- c) No experimento anterior, existe um potencial, chamado de potencial de frenagem Vo, para o qual nenhum elétron chega à placa. Esboce o gráfico desse potencial em termos da frequência da radiação incidida na placa metálica. Qual a relação deste gráfico com a solução proposta por Einstein e a constante de Planck?
- Q5 A descrição do elétron no átomo de hidrogênio é o único problema atômico analítico (sem inserção de spin) que pode ser resolvido pela teoria de Schrödinger. No átomo de hidrogênio é elétron é submetido a um potencial Coulombiano devido ao núcleo. A forma direta de resolver o problema é escrever a equação em coordenadas esféricas e achar a solução por separação de variáveis. A solução (autovalores) é da forma

$$\psi_{nlm}(r,\theta,\phi) = R_n(r)Y_{lm}(\theta,\phi)e^{-\left(\frac{i}{\hbar}\right)Et}$$

Com autovalor de energia dado por

$$E_n = -\frac{13.6}{n^2}$$

- a) Discuta os valores para os possíveis números quânticos e, para um dado nível eletrônico, sua degenerescência, incluindo o spin.
- b) Suponha que um átomo de hidrogênio esteja em seu nível fundamental e seja dada energia a este átomo com radiação cujo comprimento de onda é $\lambda=102,73$ nm. Qual o nível eletrônico que o átomo assumirá?

Exame de Seleção – Programa de Pós-graduação em Física da UFMA – 2012.2

c) O que acontece com os níveis quando $n \to \infty$? Qual é a energia de dissociação?

Explique sua resposta.

d) Qual o papel das correções relativísticas e do acoplamento spin-órbita sobre o

espectro descrito acima? Como o efeito destas correções é calculado?

Q6 – A respeito do operador de momento angular:

a) Se um operador qualquer comuta com duas componentes do momento angular,

então ele comutará também com a terceira componente.

b) Mostre que se um sistema está em um autoestado de J_z , então o valor médio de J_χ

e J_y neste estado se anulam.

c) Calcule o valor médio da componente do momento angular ao longo da direção z',

que faz um angulo θ com o eixo **z**, se o sistema é descrito pelo autoestado de J_z .

d) Mostre que em qualquer representação na qual J_x e J_z são matrizes reais, J_y é da

forma iM, onde i é o imaginário puro e M é uma matriz real antisimétrica.

 $\mathbf{Dado:}\left[J_{a},J_{b}\right]=i\hbar\epsilon_{abc}J_{c}$