

UNIVERSIDADE FEDERAL DO MARANHÃO Centro de Ciências Exatas e Tecnologia

Coordenadoria do Programa de Pós-Graduação em Química Avenida dos Portugueses, s/n – Bacanga – 65.085-580 São Luís (MA) Fone: (98) 3272 8246 - cpgquim@ufma.br

PROVA DA SELEÇÃO DO CURSO DE MESTRADO EM QUÍMICA 2º SEMESTRE DE 2013 22/07/2013

Questão 1.

1. O gráfico que segue relaciona os valores de energia de ionização do magnésio (elétrons volt) com a ordem de ionização. Analisando o gráfico, podemos observar um comportamento crescente, até a oitava energia de ionização, depois o valor decresce para a nona e volta a crescer em seguida. Explique o comportamento deste gráfico relacionando esta propriedade periódica com a distribuição eletrônica do magnésio.

Questão 2.

2. Escreva as fórmulas de Lewis dos seguintes compostos: H_2CO_3 e NaNO₃. Qual(is) o(s) tipo(s) de ligação em cada composto ? Dados: Z(H)=1; Z(O)=8; Z(N)=7; Z(Na)=11.

Questão 3.

3. Explique o fato de que o oxigênio é paramagnético, utilizando considerações da teoria dos orbitais moleculares e a configuração eletrônica do O₂. Qual é a ordem de ligação no O₂ ? Dados: Z(O)= 8.

Questão 4.

4. O teor de cloreto em uma amostra de urina foi determinado pela titulação do cloreto com o íon mercúrico, segundo a reação : Hg²+ + 2 Cl⁻ → HgCl₂(aq). Quando a reação se completa, excesso de Hg²+ reage com o indicador, difenilcarbazona, formando a cor azul-violeta.

- (a) O nitrato mercúrico foi padronizado através da titulação de uma solução contendo 147,6 mg de NaCl, que precisou de 28,06 mL de solução de Hg(NO₃)₂. Determine a concentração, em mol/L, do Hg(NO₃)₂.
- (b) Quando a mesma solução de Hg(NO₃)₂ foi usada para titular 2,000 mL de urina, foram necessários 22,83 mL. Qual a concentração, mg/mL, de Cl⁻ na urina?

Questão 5.

5. Uma certa massa de formiato de amônia, $NH_4(HCOO)$, que é uma substância usada clandestinamente na fabricação de anfetamina e de 3,4-metilenodioxianfetamina (MDA), foi dissolvida em água o suficiente para preparar uma solução 0,010 mol/L. Determine o pH desta solução. Dados: $K_a(HCOOH) = 1,772 \times 10^{-4}$; $K_b(NH_3) = 1,6 \times 10^{-5}$.

Questão 6.

6. A reação $NO_{(g)} + O_{2(g)} \Leftrightarrow 2 NO_{2(g)}$ entra em equilíbrio a uma pressão total de 1 atm. A 527°C, 2 mol de $NO_{(g)}$ são misturados com 1 mol de $O_{2(g)}$. Análise do sistema, mostra a presença de 0,71 mol de $O_{2(g)}$ no equilíbrio. Calcule a constante de equilíbrio da reação.

Questão 7.

7. Para a reação : $2 N_2 O_{5(g)} \rightarrow 2 N_2 O_{4(g)} + O_{2(g)}$, um estudante afirmou que a mesma era uma reação de segunda ordem! Usando os dados abaixo, verifique se a afirmação do estudante é verdadeira.

t/(s)	0	1200	2400	3600	4800	6000	7200	8400	9600	10800	12000	13200
P(N ₂ O ₅)/torr	268,7	247,2	236,2	227,1	217,8	209,5	201,8	193,2	185,8	178,1	164,9	152,4

Questão 8.

8. A partir das semi-reações:

e sabendo que ΔG° = - RT Ln K = - n F $\Delta \epsilon^\circ$, calcule a constante de equilíbrio (K_{ps}) a 25°C para a reação:

$$AgCl_{(s)} \quad \Leftrightarrow \ Ag^+{}_{(aq)} \ + \ Cl^-{}_{(aq)}$$

Questão 9.

9. Considerando a fórmula molecular C₅H₁₁Br, escreva todas as possíveis estruturas isoméricas constitucionais e dê a nomenclatura de cada uma.

Questão 10.

10. Dada a estrutura do composto orgânico a seguir,

Responda:

- (a) Qual seu nome segundo as regras da IUPAC?
- (b) Quantos (e quais) carbonos estereogênicos existem em sua estrutura?
- (c) Quantos isômeros opticamente ativos possui o composto?
- (d) Determine a configuração R ou S dos carbonos estereogênicos existentes.