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Abstract

Public Announcement Logics (PAL) have been widely known as the
simplest versions of Dynamic Epistemic Logics (DEL). They were de-
signed to model the reasoning about epistemic changes in groups of agents
when these changes are triggered by a public simultaneous disclosure of
some true information. Since their first formulations, almost the entirety
of research on PAL has been oriented to their propositional level, and
several open problems have been captivating the attention of many re-
searchers from computer science and philosophy. In this paper, rather
than dealing with open problems, we provide some complete axiomatiza-
tions for quantified PAL, along with related discussions.

Keywords: Dynamic Epistemic Logic, Public Announcement Logic, Quanti-
fied Epistemic Logic.

1 Introduction and motivations

Public Announcement Logics (PAL) are an umbrella description for a class of
different systems formalizing changes in epistemic states of individual agents
(or groups of agents), as long as these changes are triggered by a simulta-
neous and universal acquisition of a true information (an announcement) by
all agents, provided that there is common knowledge that this acquisition is
simultaneous and universal.

They were, so to speak, the first steps toward Dynamic Epistemic Logics
(DEL). To be precise, we could view PAL as (usual) epistemic logics strenght-
ened with a single class of dynamic operators, not the other way round (dy-
namic logics containing epistemic modalities).1

1Roughly speaking, public announcements correspond to atomic programs or tests in
dynamic logic, safeguarding their differences. We should remember that, as in epistemic logic
with many agents we could count as many epistemic operators as many available agents,
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This distinction is important, because in general, even when it comes to
full-fledged DEL (which formalize other epistemic actions than public an-
nouncements, like private announcements, suspicions or individual acquisition
of private informations, etc.), we are limited to reasoning about changes in the
agents’ epistemic states, without considering any factual changes in the world
(as in typical dynamic logics).2

As it is well known, epistemic logic has to do with the reasoning about
knowledge attribution to agents or groups of agents. Nevertheless, considering
agents’ epistemic states as static and immutable classes of propositions is a
poor strategy for a logic of knowledge. Exchanging informations is an intrinsic
part of knowledge (when understood as a process), and this is a sensible topic
when it comes to epistemological or computational applications.

Inspired by the resources from dynamic logic, the dynamic turn in epistemic
logics allowed the representation of epistemic changes in the object language
itself, having PAL been the first attempts in that direction. These changes
are mirrored in a semantics that, once a typical (relational) epistemic model
is available, allowed straightforward and effective update strategies in order to
calculate the semantic status of a proposition describing some epistemic actions
and their outcomes.3

The two seminal works on PAL were [15] and [7], and each of them left its
own mark on current standard treatments, and also has some feature which fell
into disuse. The reader might consider reading [4, ch.4] for a nicely done pre-
sentation. A few extensions and alternative formulations have been proposed
[8, 17, 18, 14], as well as contributions to open problems [10, 11].

In this paper, we are concerned with first-order extensions for PAL (or
FOPAL). The standard approach for PAL consists, roughly speaking, in a sort
of combination of Kripke-style relational semantics with update semantics. In
a quantified setting, however, it is not trivial how to reasonably extend this
strategy, for we must consider a number of features, including quantification
domains, contingent identities and free individual variables.

As far as we know, only two sources have dealt with this topic: [13] and
[12]. The former has provided only brief remarks on the subject, and the latter
has chosen a rather complicated and non standard semantic framework, justi-
fied by author’s specific concerns (basically: modelling his notion of verifiable
knowledge). We also learn from Kishida [12] that Ma’s preliminary results for
FOPAL in [13] had an important mistake4 and that no (complete) axioma-

strictly speaking, we actually have an infinite number of public announcement modalities,
one for each proposition that could be announced.

2For a thorough presentation of dynamic logic, see [9]. At least a couple of different
versions for DEL are carefully presented in [4].

3More about information dynamics and the dynamic turn can be found in [1].
4The mistake consisted in a purportedly valid reduction schema involving quantifiers and
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tization had been proposed for quantified PAL before Kishida’s paper (even
considering simple models with constant domain, he insists).

On the other hand, Kishida’s proposal [12] had its own peculiarities. Be-
sides his elegant, but complicated, non standard semantic treatment (a com-
bination of neighborhood and sheaf semantics), comitted to a (philosophically
controversial) counterpart theory of individuals, his approach also had two
important limitations: single-agent scenarios and closed announcements (i.e.,
announcements whose contents have no free individual variables).

Our contribution tries to fill this gap. We provide a family of axiom sys-
tems for FOPAL considering multi-agent scenarios, standard relational (Krip-
kean style) semantics, usual quantification domains (without individual coun-
terparts), and no restrictions on the individual variables in the contents of
announcements.

Moreover, we are interested in complete systems, and this reasonable choice
has taken its toll, which requires an explanation. Usually, PAL systems include
epistemic operators for common knowledge, due to interesting relations between
public announcements and this peculiar collective epistemic state. However,
it is known that even weak versions of (static) first-order epistemic logic with
common knowledge are not axiomatizable [19], which forces us to restrict our
present focus on PAL without common knowledge modalities.

Also, for philosophical reasons, our approach has opted for actualist quan-
tification, as well as a relational semantic with variable domains. In order to
implement these preferences, we resort to a free logic axiomatization, instead
of a classical quantificational basis. Our guidelines are strongly influenced by
well-known discussions on first-order modal logics and variable domain models
— see, for example, [3, ch.15] [5, ch.4] [2, ch.9].

2 Syntax

Consider a non-empty set A = {i1, . . . , in} with n epistemic agents (n ∈ N). A
FOPAL language LnK[.] contains these lists of primitive symbols:

1. individual variables x0, x1, . . . ;

2. n-ary predicates Pn0 , P
n
1 , . . . ;

3. propositional constant ⊥;

4. identity symbol = ;

announcement operators, which in fact resulted invalid w.r.t. the standard semantic ap-
proach.
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5. a Boolean operator → ;

6. universal (actualist) quantifier ∀;

7. epistemic modal operators Ki (i ∈ A);

8. public announcement operators [.].

Before we define a syntax for LnK[.], a remark is needed. The reader may
have noticed that the lists above don’t include symbols for individual constants.
The adoption of flexible individual terms requires much more semantic difficul-
ties, and might easily produce incomplete systems [6, p.289-302][3, p.335-342].
In particular, the inclusion of non-rigid individual constants demands a con-
siderable complication in completeness proofs, and won’t guarantee complete
first-order systems weaker than S5.

Since we want to give a family of complete systems for FOPAL capable
of modelling contingent identities in natural language (even if our identity
symbol = doesn’t stand for a contingent identity), we’ll leave out symbols
for individual constants. Because of this, our formal treatment for contingent
identities will be done in a indirect way. Whenever we want to denote objects
through descriptions, the chosen strategy will be using equivalences between
properties satisfiable only by a unique individual in each model point.5

Definition 2.1 (LnK[.] formulas) The formulas in LnK[.] are defined by this
grammar, in BNF notation:

ϕ :: ⊥ | P k(~x) | (x = y) | ϕ→ ϕ | ∀xϕ | Kiϕ | [ϕ]ϕ

We consider as atomic formulas only ⊥ and instances of schemas P k(~x)
and (x = y). Lowercase Greek letters ϕ, ψ, ..., will be metavariables for any
formulas; lowercase Latin letters p, q, ..., are metavariables for atomic formulas
only. The usual abbreviations for formulas with symbols ¬, 6=, ∧, ∨, ↔, ∃ are
assumed here, and we’ll mention explicitly only the following:

Definition 2.2 (LnK[.] abbreviations) Consider the following abbreviations
for LnK[.] formulas:

1. E(x) =def ∃y(y = x) (where y is any variable different from x);

2. 〈ϕ〉ψ =def ¬[ϕ]¬ψ;

5For space limitations, details on this particular topic aren’t included in this paper, but
can be found in [16, p.130-135].
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We’ll assume the usual conventions for free and bound (occurrences of)
variables. Moreover, let’s informally define a free individual occurrence of
variable x in a formula ϕ as replaceable by another variable y iff y doesn’t
occur in a subformula ∀yψ in ϕ. The schema ϕ(x/y) stands for the result of
replacing all free occurrences of x in ϕ, if there’s any, for occurrences of y,
wherever x is replaceable for y in ϕ.

3 Semantics

After the basic syntax for LnK[.], let’s describe our relational semantics.

Definition 3.1 (Epistemic frame) Let A be a non-empty finite set of epis-
temic agents. An epistemic frame F for LnK[.] is a tuple (W, {Ri}i∈A), such

that W is a non-empty set (of evaluation points) and each Ri is a (possibly
empty) binary relation between members of W . Besides:

1. F is reflexive iff, for every w ∈W and each Ri: (w,w) ∈ Ri;

2. F is transitive iff, for any w,w′, w′′ ∈ W and each Ri: (w,w′) ∈ Ri &
(w′, w′′) ∈ Ri ⇒ (w,w′′) ∈ Ri;

3. F is euclidean iff, for any w,w′, w′′ ∈ W and each Ri: (w,w′) ∈ Ri &
(w,w′′) ∈ Ri ⇒ (w′, w′′) ∈ Ri.

Definition 3.2 (Augmented epistemic frame) An augmented epistemic frame
for LnK[.] is a tuple (W, {Ri}i∈A, D), such that W and {Ri}i∈A are exactly as

in an epistemic frame, and D is a non-empty set (of objects).

Definition 3.3 (Epistemic model) An epistemic model for LnK[.] is a tu-

ple (W, {Ri}i∈A, D,Q, I), such that W , {Ri}i∈A and D are exactly as in an
augmented epistemic frame, Q is a function from W in 2D, and I is an inter-
pretation for LnK[.] such that I(P k, w) ⊆ Dk.

Before we give the satisfiability conditions, as usual, we’ll need to define
what is a variant of an assignment of denotations to individual variables.

Definition 3.4 (Variant of an assignment) Let M = (W, {Ri}i∈A, D,Q, I)
be an epistemic model for LnK[.], and let σ be an assignment of members of D
to each individual variable x0, x1, . . . in LnK[.]. A variant of σ w.r.t. a variable

xj is an assignment σ(xj/o) exactly as σ except at most on its jth place, where
σ(xj/o)(xj) = o, for some o ∈ D.
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Definition 3.5 (Satisfiability conditions) Let M = (W, {Ri}i∈A, D,Q, I)
be an epistemic model for LnK[.]. Also, let w ∈ W and σ be an assignment

of members of Q(w) to the individual variables. We define the satisfiability
relation � in the following manner:

1. (Mσ, w) 2 ⊥;

2. (Mσ, w) � P k(xi1 , ..., xik) iff (σ(xi1), . . . , σ(xik)) ∈ I(P k, w);

3. (Mσ, w) � (x = y) iff σ(x) = σ(y);

4. (Mσ, w) � ϕ→ ψ iff either (Mσ, w) 2 ϕ or (Mσ, w) � ψ;

5. (Mσ, w) � ∀xϕ iff, for every o ∈ Q(w), (Mσ(x/o), w) � ϕ;

6. (Mσ, w) � Kiϕ iff, for every w′ ∈W , wRiw
′ ⇒ (Mσ, w′) � ϕ;

7. (Mσ, w) � [ϕ]ψ iff, for every (M ′, w′), if M ′ = M |ϕσ and w′ = w, then
(M ′σ, w′) � ψ;

where M |ϕσ = (W !, {Ri}!i∈A, D!, Q!, I !) is an epistemic model such that:

1. W ! = ‖ϕ‖σM = {w ∈W : (Mσ, w) � ϕ};

2. D! = D and, for each w ∈W !, Q!(w) = Q(w);

3. each assignment τ over M |ϕσ behaves exactly as its homonym on M ;

4. R!
i = Ri ∩ (W ! ×W !);

5. For each w ∈W !, I !(P k, w) = I(P k, w) and I !(⊥, w) = I(⊥, w).

By convenience, let’s refer to M |ϕσ as an update of model M w.r.t. ϕ and σ.

Note that, although the set W of worlds (evaluation points) in a model M
may be modified after an update, changing the underlying frame for M , the
initial domain D of M remains the same in the updated model. Consequently,
an assignment of objects to individual variables isn’t affected by an update.
Besides, the indication of the assignment σ in notation ‖ϕ‖σM allow us to track,
so to speak, the original assignment σ, if we are led to work with its variants
in the updated model.

It might be useful to detail the truth condition for formulas containing
the dual modality 〈.〉, which appears in the next corollary, and whose proof is
omitted due to its simplicity.
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Corollary 3.6 From Definitions 2.2 and 3.5, it follows the truth condition:

(Mσ, w) � 〈ϕ〉ψ iff there exists an epistemic model (M ′, w′) such that M ′ =
M |ϕσ and w′ = w and (M ′σ, w′) � ψ.

For reasons of space, we won’t discuss or prove many semantic details and
metaproperties for FOPAL that are strongly similar to PAL, including most
schemas in next metatheorems, which are stated here only for clarity purposes
in further proofs.6 Let’s focus on FOPAL specificities.

Theorem 3.7 Consider an arbitrary epistemic model M , and a point w ∈W
in M , and an assignment σ over M . For any formulas ϕ and ψ in LnK[.], as
well as any atomic formula p in that language, we have that:

1. if (Mσ, w) � 〈ϕ〉ψ, then (Mσ, w) � ϕ;

2. if (Mσ, w) 2 [ϕ]ψ, then (Mσ, w) � ϕ;

3. if (Mσ, w) � ϕ, then (Mσ, w) � 〈ϕ〉>;

4. if (Mσ, w) 2 ϕ, then (Mσ, w) � [ϕ]ψ;

5. if (M |σϕσ , w) � p, then (Mσ, w) � p;

6. if (M |σϕσ , w) 2 p, then (Mσ, w) 2 p;

7. (M |σϕσ , w) � p iff (Mσ, w) � p (whenever there is a point (M |ϕσ , w)).

Theorem 3.8 Let ϕ, ψ and ξ be any formulas, and p be any atomic formula,
in LnK[.]. We have the following properties:

1. � 〈ϕ〉ψ → [ϕ]ψ (public announcements are functional)

2. 2 〈ϕ〉> (public announcements are partial)

3. � [p]p (public announcements preserve atomic formulas)

Theorem 3.9 Let ϕ, ψ and ξ be any formulas, and p be any atomic formula,
in LnK[.]. The following schemas are valid:

1. � [ϕ]p↔ (ϕ→ p)

2. � [ϕ](ψ → ξ)↔ ([ϕ]ψ → [ϕ]ξ)

6The reader might want to check those proofs and comments concerning PAL in references
already mentioned in this paper, e.g. [4, ch.4]. Detailed proofs and comments on each schema
in FOPAL context, can be found in [16].
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3. � [ϕ]Kiψ ↔ (ϕ→ Ki[ϕ]ψ)

4. � [ϕ][ψ]ξ ↔ [(ϕ ∧ [ϕ]ψ)]ξ

5. � (x = y)→ [ϕ](x = y)

6. � (x 6= y)→ [ϕ](x 6= y)

7. � ψ ⇒ � [ϕ]ψ

Proof. We’ll prove only schema 5. Suppose, for an arbitrary epistemic
model M , an assignment σ and an evaluation point w ∈ W in M , that
(Mσ, w) � (x = y). Also, consider an arbitrary formula ϕ in LnK[.]. If

(Mσ, w) 2 ϕ, by item 4 in Theorem 3.7, we know that (Mσ, w) � [ϕ](x = y).
If (Mσ, w) � ϕ, by item 3 in same theorem, we know that (Mσ, w) � 〈ϕ〉>;
and, consequently, that there is some (M ′, w′) such that M ′ = M |ϕσ and w′

= w and (M ′σ, w′) � >. So, consider this model point (M |σϕσ , w). As, by

construction, the domain D! in the updated model is the same as in M , and
so is the assignment σ; we can be certain that (M |σϕσ , w) � (x = y), since
the object denoted by σ(x) is the same as the one denoted by σ(y) in M ,
and this is also the case in M |ϕσ . Then, from (M |σϕσ , w) � (x = y), we can
easily infer that (Mσ, w) � 〈ϕ〉(x = y), and, by item 1 of Theorem 3.8, that
(Mσ, w) � [ϕ](x = y). By the way, schema 6 is proved in a very similar way,
by supposing (Mσ, w) � (x 6= y). �

Lemma 3.10 Let ϕ and ψ be any formulas of LnK[.], and let w be an arbitrary
evaluation point in an epistemic model M , and let σ and τ be any assignments
over domain D of M . Besides, suppose that some individual variable x doesn’t
occur free in ϕ. Then, for an arbitrary o ∈ Q(w):

1. (Mσ, w) � ϕ iff (Mσ(x/o), w) � ϕ ;

2. ‖ϕ‖σM = ‖ϕ‖σ(x/o)M ;

3. (M |τϕσ , w) � ψ iff (M |τ
ϕσ(x/o)

, w) � ψ .

Proof. 1. Assume that (Mσ, w) � ϕ and let σ(xj/oj) be, as usual, exactly like
σ except, at most, for xj , where σ(xj/oj)(xj) = oj (for some oj ∈ Q(w)). Now,
suppose that xj doesn’t occur free in ϕ. Then, we have two possibilities: either
(i) subformulas ϕ′ in ϕ don’t include any occurrences of xj , or (ii) xj occur only
in subformulas ∀xjϕ′ in ϕ. In case (i), the object assigned by σ to xj is irrele-
vant, and (Mσ, w) � ϕ′ always coincide with (Mσ(xj/oj), w) � ϕ′. In case (ii),
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it’s enough to show that (Mσ, w) � ∀xjϕ′ always coincide with (Mσ(xj/oj), w) �
∀xjϕ′. That’s easy to see. Recall that (Mσ, w) � ∀xjϕ′ ammounts to say that,
for every o ∈ Q(w), (Mσ(xj/o), w) � ϕ′, and (Mσ(xj/oj), w) � ∀xjϕ′, to say
that for every o ∈ Q(w), (Mσ(xj/oj)(xj/o), w) � ϕ′. Well, assignments σ and
σ(xj/oj) agree in each variable, except at most to xj , and both conditions
above entail that ϕ′ is satisfied in point w of M by any o ∈ Q(w) that re-
places the denotations of both σ(xj) and σ(xj/oj)(xj), which are the only place
where these denotations might have been different. Then, (Mσ, w) � ∀xjϕ′ iff
(Mσ(xj/oj), w) � ∀xjϕ′.

As (Mσ, w) � ϕ is totally determined by satisfiability of subformulas ϕ′;
by showing that, for each subformula ϕ′ of ϕ, (Mσ, w) � ϕ′ coincides with
(Mσ(xj/oj), w) � ϕ′, we are showing that (Mσ, w) � ϕ also coincides with
(Mσ(xj/oj), w) � ϕ. As xj and oj were arbitrary too, item 1 of this lemma is
guaranteed. (The other direction is obvious.)

2. As w was arbitrary in the proof for previous item, item 2 follows easily

from definitions for ‖ϕ‖σM and ‖ϕ‖σ(x/o)M .
3. Trivial, based on previous items, and as soon as it’s realized that M |ϕσ

and M |ϕσ(x/o) are exactly the same model. �

Next, we have a very important result, which should grant us dealing with
what might be called open announcements — that is, announcement operators
containing any first-order formula of LnK[.], including those with free variables.

Theorem 3.11 (Barcan-like schema for announcements) Let ϕ and ψ
be any formulas of LnK[.]. We have the following validity:

� [ϕ]∀xψ ↔ ∀y[ϕ]ψ(x/y) (where y doesn’t occur free in ϕ, neither in ψ)

Proof. (⇒) Suppose that, for arbitrary evaluation point (M,w) and assign-
ment σ, that (Mσ, w) 2 ∀y[ϕ]ψ(x/y) (where y doesn’t occur free in ϕ, neither
in ψ). Applying simple reasonings, we have that (Mσ, w) � ∃y〈ϕ〉¬ψ(x/y);
that is, for some o ∈ Q(w), it happens that (Mσ(y/o), w) � 〈ϕ〉¬ψ(x/y).
By Corollary 3.6, there is some (M ′, w′) such that M ′ = M |ϕσ(y/o) and w′

= w and (M ′σ(y/o), w′) � ¬ψ(x/y). More explicitly: for some o ∈ Q(w),

(M |σ(y/o)
ϕσ(y/o)

, w) � ¬ψ(x/y).

By construction, we know that Q!(w) = Q(w); consequently, it’s safe to
say that (M |σ

ϕσ(y/o)
, w) � ∃y¬ψ(x/y). As, by hypothesis, ϕ doesn’t con-

tain any free occurrences of y, applying item 3 of lema 3.10, we know that
(M |σϕσ , w) � ∃y¬ψ(x/y). So, there is some (M ′, w′) such that M ′ = M |ϕσ and
w′ = w and (M ′σ, w′) � ∃y¬ψ(x/y); which, by definition, gives us (Mσ, w) �
〈ϕ〉∃y¬ψ(x/y); and, finally, (Mσ, w) 2 [ϕ]∀yψ(x/y). It’s easy to see that
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∀yψ(x/y) , in aforementioned conditions, is simply an alphabetical variant of
∀xψ, and it follows that (Mσ, w) 2 [ϕ]∀xψ.

(⇐) Suppose, now, that (Mσ, w) 2 [ϕ]∀xψ. By usual reasonings, we have
(Mσ, w) � 〈ϕ〉∃x¬ψ. By Corollary 3.6, we also have that, for some (M ′, w′), M ′

= M |ϕσ and w′ = w and (M ′σ, w′) � ∃x¬ψ. Consider an arbitrary individual
variable y without free occurrences in ϕ, neither in ψ. Well, it’s easy to see
that ∃x¬ψ is just an alphabetical variant of ∃y¬ψ(x/y), and, then, (M ′σ, w′) �
∃y¬ψ(x/y). Thus, for some o ∈ Q!(w′), (M ′σ(y/o), w′) � ¬ψ(x/y). That is, for

some o ∈ Q!(w′), (M |σ(y/o)ϕσ , w) � ¬ψ(x/y).

By item 3 in Lemma 3.10, it’s safe to say that, for some o ∈ Q!(w′),

(M |σ(y/o)
ϕσ(y/o)

, w) � ¬ψ(x/y); that is, for some (M ′, w′), M ′ = M |ϕσ(y/o) and w′

= w and (M ′σ(y/o), w′) � ¬ψ(x/y). By construction, we know that Q!(w) =
Q(w). Applying Corollary 3.6, we have that, for some o ∈ Q(w), (Mσ(y/o), w) �
〈ϕ〉¬ψ(x/y); then, (Mσ, w) � ∃y〈ϕ〉¬ψ(x/y). By usual reasonings, (Mσ, w) 2
∀y[ϕ]ψ(x/y). �

If we informally define as closed public announcements those public an-
nouncement operators which contain only closed formulas (i.e., with no free
variables), we can easily derive the following corollary as a particular case of
previous theorem, because we no longer have to replace the bound variable by
an alphabetical variant to guarantee the equivalence. Its proof is simple and
will be omited.

Corollary 3.12 (Barcan schema for closed announcements) Let ϕ be a
closed formula, and ψ be any formula, of LnK[.]. We have the following validity:

� [ϕ]∀xψ ↔ ∀x[ϕ]ψ

It’s important to show that the well-known property of substitution be-
tween equivalents within formulas works here, as long as we observe a simple
restriction.

Definition 3.13 (Off-announcement occurrence of a formula) Let’s de-
fine, for any formulas ϕ, ψ and ξ in LnK[.], that an occurrence of ϕ is an off-
announcement occurrence whenever this occurrence isn’t a subformula of some
occurrence of ψ such that [ψ]ξ.

Observe that an off-announcement occurrence can happen within the scope
of an announcement, or it can even contain an announcement, but it can’t be
itself the content of the announcement. For example, the occurrence of ϕ in
[ψ]ϕ, as well as the occurrence of [ψ]ξ in [ϕ][ψ]ξ are off-announcement occur-
rences, but, in the latter case, the occurrence of ϕ isn’t an off-announcement
one. Now, let’s proceed to the substitution property.
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Lemma 3.14 (Substitution of equivalents) Let ϕ, ψ and ζ be any formu-
las in LnK[.]. By schema ζ(ϕ/ψ), we understand the result of replacing some (or

all) off-announcement occurrences of ϕ, if there are any, in ζ, by occurrences
of ψ. Then,

if � ϕ↔ ψ, then, � ζ ↔ ζ(ϕ/ψ)

Proof. By induction on ζ. I.h.: the lemma applies to ζ with length < n. We’ll
prove only the relevant situations, i.e., when ζ contains off-announcements
occurrences of ϕ. The remaining situations are proved as in literature on
(static) first-order epistemic logic — e.g., [16, p.74].

ζ has the form ζ ′ → ζ ′′. Obviously, any occurrences of ϕ should happen
either in ζ ′, or in ζ ′′. In any case, by i.h., we know that ζ ′ ↔ ζ ′(ϕ/ψ) and
ζ ′′ ↔ ζ ′′(ϕ/ψ). By propositional reasoning, we obtain (ζ ′ → ζ ′′)↔ (ζ ′(ϕ/ψ)→
ζ ′′(ϕ/ψ)), which, obviously, is the same as (ζ ′ → ζ ′′)↔ (ζ ′ → ζ ′′)(ϕ/ψ).

ζ has the form ∀xζ ′. Of course, any occurrences of ϕ will be subformulas
of ζ ′. From tautology ζ ′ ↔ ζ ′, we have, by i.h., ζ ′ ↔ ζ ′(ϕ/ψ). By usual first-
order reasonings, we also have ∀xζ ′ ↔ ∀xζ ′(ϕ/ψ), which ammounts to say that
∀xζ ′ ↔ (∀xζ ′)(ϕ/ψ).

ζ has the form Kiζ ′. Obviously, any occurrences of ϕ should be in ζ ′. From
tautology ζ ′ ↔ ζ ′, we infer, by i.h., ζ ′ ↔ ζ ′(ϕ/ψ). By usual modal reasonings,
we obtain Kiζ ′ ↔ Kiζ ′(ϕ/ψ), which is the same as Kiζ ′ ↔ (Kiζ ′)(ϕ/ψ).

ζ has the form [ζ ′]ζ ′′. As we are considering only off-announcements oc-
currences of ϕ, they should occur as subformulas of ζ ′′. Then, again from
tautology ζ ′′ ↔ ζ ′′, we obtain, by i.h., ζ ′′ ↔ ζ ′′(ϕ/ψ). By items 7 and 2 in
Theorem 3.9, it’s easy to see that [ζ ′]ζ ′′ ↔ [ζ ′]ζ ′′(ϕ/ψ); which ammounts to
say that [ζ ′]ζ ′′ ↔ ([ζ ′]ζ ′′)(ϕ/ψ).7 �

4 Axiomatizations and completeness issues

Now, we provide a basic axiom system QKn
[.] for FOPAL. As usual, ⇒ stands

for the inference of formulas in FOPAL, ` ϕ means that ϕ is a theorem, and
we say that a formula ϕ is derivable from a set Γ of formulas (notation: Γ ` ϕ)
iff, for some γ1, γ2, ..., γn ∈ Γ, it is the case that ` (γ1 ∧ γ2 ∧ ... ∧ γn)→ ϕ.

7Actually, we’d have to prove first, from item 2 in Theorem 3.9, that � [ϕ](ψ ↔ ξ) ↔
([ϕ]ψ ↔ [ϕ]ξ); but, this is straightforward.



350 M. K. F. Pereira

PL (all classical tautologies)
MP ϕ→ ψ, ϕ⇒ ψ

K Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)
Nec ϕ ⇒ Kiϕ
Atomic[·] [ϕ]p↔ (ϕ→ p)
Distribution[·] [ϕ](ψ → ξ)↔ ([ϕ]ψ → [ϕ]ξ)
Knowledge[·] [ϕ]Kiψ ↔ (ϕ→ Ki[ϕ]ψ)
Composition[·] [ϕ][ψ]ξ ↔ [(ϕ ∧ [ϕ]ψ)]ξ
Barcan[·] [ϕ]∀xψ ↔ ∀y[ϕ]ψ(x/ y) (when y isn’t free in ϕ, nor ψ)
Nec[·] ϕ ⇒ [ψ]ϕ

Vac∀ ∀xϕ↔ ϕ (when x isn’t free in ϕ)
Distr∀ ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ)
Inst∀ (∀xϕ ∧ E(y))→ ϕ(x/y))
E∀ ∀xE(x)
Gen∀ ϕ⇒ ∀xϕ
Gen∀n ϕ1 → Ki(ϕ2 → . . .Ki(ϕn → Kiψ) . . .)

⇒ ϕ1 → Ki(ϕ2 → . . .Ki(ϕn → Ki∀xψ) . . .)
(when x isn’t free in ϕ1, . . . , ϕn)

Id (x = x)
Subst (x = y)→ (ϕ→ ϕ′)

(where ϕ′ is as ϕ except for having free y
in 0 or more places where ϕ contains free x)

NecDif (x 6= y)→ Ki(x 6= y)

Figure 1: Axiom system QKn
[.]

Definition 4.1 (QKn
[.] and extensions) The axiom schemas in Figure 1 de-

fine the first-order axiom system QKn
[.] for FOPAL. Besides, by adding com-

binations of the axiom schemas below, we define the respective axiom systems
obtained based in QKn

[.]:

1. QKn
[.] plus Kiϕ→ ϕ (veridicality): QKTn

[.]

2. QKTn
[.] plus Kiϕ→ KiKiϕ (positive introspection): QKT4n[.]

3. QKTn
[.] plus ¬Kiϕ→ Ki¬Kiϕ (negative introspection): QKT5n[.].

Many interesting theorems, derived rules and properties could be discussed
here, including soundness proofs; however, for limitations of space, we move
forward to completeness issues.8

8The reader is advised to check detailed comments and proofs in [16, ch.6].
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Concerning completeness of each of the systems QKn
[.], QKTn

[.], QKT4n[.]
and QKT5n[.], we can resort to the standard strategy for PAL, which reduces,
so to speak, each formula from LnK[.] to a corresponding formula in the static
fragment LnK, whose syntax is exactly as LnK[.]’s, except for the lack of public
announcement operators and, obviously, formulas including these operators.

Thus, we would just have to determine a static first-order epistemic axiom
system that would be complete w.r.t. some class of frames, and, by reducing
our dynamic system to its static version, the former would be automatically
complete w.r.t. the same class of frames.9 By the way, this is the main reason
for choosing precisely those axiom schemas labelled with [·] in our list on Figure
1, usually called “reduction axioms”.

Now, in order to prove completeness for our FOPAL systems by means of
a reduction to their static (complete) counterparts, we first need to define a
static translation for every FOPAL formula, and then prove that each of them
is equivalent to its (static) correspondent.

Definition 4.2 (Translation of a formula from LnK[.]) Let ϕ, ψ and ξ be
any formulas, and p be any atomic formula, both in LnK[.] and in LnK. We
define recursively the translation of a formula from LnK[.] into LnK as a mapping
t: LnK[.] −→ L

n
K such that:

1. t(p) = p

2. t(ϕ→ ψ) = t(ϕ) → t(ψ)

3. t(∀xϕ) = ∀xt(ϕ)

4. t(Kiϕ) = Kit(ϕ)

5. t([ϕ]p) = t(ϕ→ p)

6. t([ϕ](ψ → ξ)) = t([ϕ]ψ → [ϕ]ξ)

7. t([ϕ]Kiψ) = t(ϕ→ Ki[ϕ]ψ)

8. t([ϕ]∀xψ) = t(∀y[ϕ]ψ(x/ y))

(where y is any individual variable not free in ϕ, nor in ψ)

9. t([ϕ][ψ]ξ) = t([ϕ ∧ [ϕ]ψ]ξ)

The next corollary will be useful in our proofs. Its proof should be easy
enough and will be omitted here.

9Of course, completeness of PAL systems can be proved through other strategies. See also
[18] for a discussion on different axiomatizations for propositional PAL.
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Corollary 4.3 The following conditions follow from the previous definition:

1. t(¬ϕ) = ¬ t(ϕ)

2. t([ϕ]¬ψ) = t(ϕ→ ¬[ϕ]ψ)

3. t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)

As it should be obvious by now, the mapping t is directly related to those
aforementioned reduction axioms, and this fact reveals their main motivation:
to enable a progressive migration of a public announcement operator within a
dynamic formula, subformula by subformula, until it reaches the point where
the scope of the announcement is just an atomic formula, when the whole
formula can be replaced by a (completely) static correspondent (without an-
nouncement operators).

It might be useful making a brief note on item 8 in Definition 4.2, which is
clearly related to axiom schema Barcan[·], which, by its turn, had its validity
proved on Theorem 3.11. The restriction in Barcan[·] is needed because, in
order to make [ϕ]∀xψ entail ∀x[ϕ]ψ, no free occurrence of a variable in ϕ
should become bound by adding the quantifier prefix ∀x, and, when making
∀x[ϕ]ψ entail [ϕ]∀xψ, no bound occurrence of a variable in ϕ becomes free after
narrowing the scope of ∀x. Any of these possibilities would affect the semantic
conditions, preventing the equivalence between both sides of the biconditional.

The use of an alphabetical variant with that aforementioned restriction
in choosing the variable y avoids this trouble. Also, it serves the purpose of
reduction, because ∀xψ can be easily proven to be equivalent to ∀yψ(x/y) when
y isn’t free in ψ (see, for example, [16, p.75]). With the additional care on pre-
existing occurrences of y in the content of an announcement operator, that
equivalence solves the puzzle of moving the announcement operator without
messing with our initial free and bound variables.

Lemma 4.4 Let ϕ, ψ, ξ and ζ be any formulas in LnK[.]. By ζ(ϕ/ψ), we

understand the result of replacing some (or all) off-announcements occurrences
of ϕ, if there are any, in formula ζ, by occurrences of ψ. The following rule is
derivable in QKn

[.]:

` ϕ↔ ψ ⇒ ` ζ ↔ ζ(ϕ/ψ)

Proof. Induction on ζ. Very similar to Lemma 3.14, now using tautologies
and theorems of QKn

[.]. �

We already know that all the reduction axioms are valid (Theorems 3.9
and 3.11), and that the substitution of equivalents preserves validity (Lemma
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3.14), and is also a derived rule in QKn
[.] (Lemma 4.4). Now, we might want to

check if all those axioms serve adequately to the purpose of continually moving
the announcement operator within a formula, until there remains only atomic
formulas in its scope and this announcement operator can be safely erased.

Let’s see how this works with an example, using only Atomic[·], Barcan[·]
and substitution of equivalents.

Example 4.5 Reduction of ∀x[P (x)]P (x)→ [P (x)]∀xP (x):

1. ∀x[P (x)]P (x)→ [P (x)]∀xP (x)

2. ∀x[P (x)]P (x)→ ∀y[P (x)]P (y)

3. ∀x(P (x)→ P (x))→ ∀y(P (x)→ P (y))

As our goal is to prove the completeness of QKn
[.] (and its extensions listed

above) by reducing them to their corresponding complete static first-order
epistemic systems, this reduction will be assured only if we can prove the
equivalence between of each formula in LnK[.] and its corresponding static version
in LnK through translation t. For this, it wouldn’t be enough to make the usual
induction on length of formulas. To mention just one simple case, consider
Atomic[·]. An instance of schema ϕ→ p isn’t a subformula of [ϕ]p, nor vice-
versa; and cases like this would prevent the application of inductive hypothesis
to show the desired equivalence.

Then, the reduction strategy requires another convenient and reliable order-
ing of formulas, known as complexity measure, which doesn’t depend exclusively
on the relation among a formula and its subformulas, although considers this
relation. Next, we provide a definition of this measure, adapted for FOPAL.

Definition 4.6 (Complexity of a formula) Let ϕ and ψ be any formulas,
and p be any atomic formula, in LnK[.]. The complexity of a formula in LnK[.] is
a mapping c: LnK[.] −→ N, defined recursively in this way:

1. c(p) = 1

2. c(ϕ→ ψ) = 1 + max(c(ϕ), c(ψ))

3. c(Kiϕ) = 1 + c(ϕ)

4. c(∀xϕ) = 1 + c(ϕ)

5. c([ϕ]ψ) = (2 + c(ϕ))· c(ψ)

Corollary 4.7 Considering Definition 4.6, we have that:
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1. c(¬ϕ) = 1 + c(ϕ)

2. c(ϕ ∧ ψ) = 2 +max(c(ϕ), 1+ c(ψ))

Proof. 1. Consider c(¬ϕ). The unabbreviated formula would be c(ϕ→ ⊥),
which, by definition, has the complexity 1 + max(c(ϕ), c(⊥)), and, as ⊥ is
atomic, 1 + max(c(ϕ), 1 ). Now, if ϕ is atomic too, c(ϕ) = c(⊥) = 1. If ϕ
isn’t atomic, certainly c(ϕ) > c(⊥). It’s clear that we can always disregard
c(⊥) in max(c(ϕ), c(⊥)); then, the initial expression is the same as 1 + c(ϕ).

2. Consider c(ϕ ∧ ψ). The unabbreviated conjunctive formula gives us
c(¬(ϕ → ¬ψ)), which, by previous item in this proof, is the same measure as
1 + c(ϕ→ ¬ψ). This complexity is equivalent to 1 + (1 +max(c(ϕ), c(¬ψ))),
that is, 2 + max(c(ϕ), c(¬ψ)). Now, again by previous item, that’s the same
as 2 +max(c(ϕ), 1+ c(ψ)). �

The next lemma makes sure that our function c truly imposes a rigorous
ordering on the formulas of LnK[.], by satisfying some desired properties. Be-
sides, during its proof, it becomes clear why choosing the numerical constant
2 in item 5 of Definition 4.6. In fact, this is the least natural number that
satisfies the lemma.10

Lemma 4.8 Let ϕ and ψ be any formulas, and p be any atomic formula, in
LnK[.], and let sub(ϕ) be the set of subformulas of ϕ. Then, we have:

1. if ϕ ∈ sub(ψ), then, c(ϕ) ≤ c(ψ)

2. c(ϕ→ p) < c([ϕ]p)

3. c([ϕ]ψ → [ϕ]ξ) < c([ϕ](ψ → ξ))

4. c(Ki[ϕ]ψ) < c([ϕ]Kiψ)

5. c(∀x[ϕ]ψ) < c([ϕ]∀xψ)

6. c([ϕ ∧ [ϕ]ψ]ξ) < c([ϕ][ψ]ξ)

Proof. 1. Induction on ψ. (i) ψ is atomic. Obviously, c(ψ) ≤ c(ψ).
I.h.: For c(ψ) = n (arbitrary), if ϕ ∈ sub(ψ), then c(ϕ) ≤ c(ψ). Suppose,

in each step below, that ϕ ∈ sub(ψ). (Subcases where ϕ is ψ are obvious.)

10As a curiosity, the reader might want to compare our choice of number 2 with the alter-
native choice of number 4 in a similar context made in [4, p.188]. The reason has to do with
our chosen primitive operators.
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(ii) ψ is ψ′ → ψ′′: Clearly, either ϕ ∈ sub(ψ′), or ϕ ∈ sub(ψ′′). By i.h.,
either c(ϕ) ≤ c(ψ′), or c(ϕ) ≤ c(ψ′′). By Definition 4.6, c(ψ′ → ψ′′) = 1 +
max(c(ψ′), c(ψ′′)). It’s easy to see that, in any case, c(ϕ) ≤ c(ψ).

(iii) ψ is ∀xψ′: Of course, ϕ ∈ sub(ψ′). By i.h., c(ϕ) ≤ c(ψ′); and, as
c(∀xψ′) = 1 + c(ψ′), we have c(ϕ) ≤ c(∀xψ′).

(iv) ψ is Kiψ′: Like above.
(v) ψ is [ψ′]ψ′′: Either ϕ ∈ sub(ψ′), or ϕ ∈ sub(ψ′′). By i.h., either c(ϕ) ≤

c(ψ′), or c(ϕ) ≤ c(ψ′′). By Definition 4.6, c([ψ′]ψ′′) = (2 + c(ψ′))· c(ψ′′). It’s
clear that, in any case, c(ϕ) ≤ c([ψ′]ψ′′).

2. By definition, c(ϕ→ p) = 1 + max(c(ϕ), c(p))
= 1 + max(c(ϕ), 1)
= 1 + c(ϕ) (because c(ϕ) ≥ 1).

On the other hand, c([ϕ]p) = (2 + c(ϕ))· c(p)
= (2 + c(ϕ)) · 1
= 2 + c(ϕ)

Obviously, 1 + c(ϕ) < 2 + c(ϕ).

3. Without loss of generality, let c(ψ) ≤ c(ξ).
So, c([ϕ]ψ → [ϕ]ξ) = 1 + max(c([ϕ]ψ), c([ϕ]ξ))

= 1 + max((2+c(ϕ))· c(ψ), (2+c(ϕ))· c(ξ))
= 1 + (2+c(ϕ))· c(ξ)
= 1 + 2· c(ξ) + c(ϕ)· c(ξ).

On the other hand, c([ϕ](ψ → ξ)) = (2 + c(ϕ))· c(ψ → ξ)
= (2 + c(ϕ)) · (1 + max(c(ψ), c(ξ)))
= (2 + c(ϕ)) · (1 + c(ξ))
= 2 + c(ϕ) + 2 · c(ξ) + c(ϕ)· c(ξ).

At last, 1 + 2· c(ξ) + c(ϕ)· c(ξ) < 2 + c(ϕ) + 2· c(ξ) + c(ϕ)· c(ξ).

4. By definition, c(Ki[ϕ]ψ) = 1 + c([ϕ]ψ)
= 1 + ((2 + c(ϕ)) · c(ψ))
= 1 + 2 · c(ψ) + c(ϕ)· c(ψ)

On the other hand, c([ϕ]Kiψ) = (2+ c(ϕ))· c(Kiψ)
= (2+ c(ϕ))· (1+ c(ψ))
= 2+ c(ϕ) + 2· c(ψ) + c(ϕ)· c(ψ).

So, 1 + 2· c(ψ) + c(ϕ)· c(ψ) < 2 + c(ϕ) + 2· c(ψ) + c(ϕ)· c(ψ).

5. Very similar to last item.

6. By definition, c([ϕ ∧ [ϕ]χ]ψ) = (2 + c(ϕ ∧ [ϕ]χ)) · c(ψ)
= (2 + (2 +max(c(ϕ), 1+ c([ϕ]χ)))) · c(ψ)
= (4 + max(c(ϕ), 1+ c([ϕ]χ))) · c(ψ)
= (4 + max(c(ϕ), 1 + ((2+ c(ϕ))· c(χ))))· c(ψ)
= (4 + (1 + ((2+ c(ϕ))· c(χ))))· c(ψ)
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= (4 + (1 + (2· c(χ)+ c(ϕ)· c(χ))))· c(ψ)
= (5 + 2· c(χ)+ c(ϕ)· c(χ))· c(ψ).

On the other hand, c([ϕ][χ]ψ) = (2 + c(ϕ))· c([χ]ψ)
= (2 + c(ϕ))· (2 + c(χ))· c(ψ)
= (4 + 2· c(ϕ) + 2· c(χ) + c(ϕ)· c(χ)) · c(ψ).

Of course: (5 + 2· c(χ)+ c(ϕ)· c(χ))· c(ψ)
< (4 + 2· c(ϕ) + 2· c(χ)+ c(ϕ)· c(χ))· c(ψ).

(Since, for sure, c(ϕ) ≥ 1, the result is guaranteed.) �

The next lemma is the the final step before completeness.

Lemma 4.9 (Equivalence between a formula and its translation) Let ϕ
be any formula in LnK[.]. Then,

` ϕ ↔ t (ϕ)

Proof. Induction on complexity measure of ϕ. Atomic case is trivial. I.h.:
For each ϕ such that c(ϕ) < n: ` ϕ↔ t(ϕ).

(i) ϕ is ϕ′ → ϕ′′. Consider ` (ϕ′ → ϕ′′)↔ (ϕ′ → ϕ′′). Since ϕ′ and ϕ′′ are
subformulas of ϕ, we know, by item 1 of Lemma 4.8, that i.h. applies, because
c(ϕ′) ≤ c(ϕ) and c(ϕ′′) ≤ c(ϕ). It’s easy to see that ` (ϕ′ → ϕ′′)↔ (t(ϕ′) →
t(ϕ′′)), which coincides, by Definition 4.2, with ` (ϕ′ → ϕ′′)↔ t(ϕ′ → ϕ′′).

(ii) ϕ is Kiϕ′. Since ϕ′ is subformula of ϕ, by Lemma 4.8 and i.h., we
obtain ` ϕ′ ↔ t(ϕ′). Applying Nec and K, we have ` Kiϕ′ ↔ Ki t(ϕ′). By
definition, Ki t(ϕ′) = t(Kiϕ′); consequently, ` Kiϕ′ ↔ t(Kiϕ′).

(iii) ϕ ∀xϕ′. Similar to above, but applying Gen∀, Distr∀ and MP on the
result of inductive hypothesis. At last, applying Definition 4.2, from ` ∀xϕ′ ↔
∀xt(ϕ′), we obtain ` ∀xϕ′ ↔ t(∀xϕ′).

We have five last cases, in which c(ϕ) > k, not necessarily involving sub-
formulas of ϕ:

(iv) ϕ is [ϕ′]p. By Atomic[·], we know that ` [ϕ′]p↔ (ϕ′ → p). By item 2
of Lemma 4.8 and i.h., we infer that ` (ϕ′ → p) ↔ t(ϕ′ → p) and, then, that
` [ϕ′]p↔ t(ϕ′ → p). Applying Definition 4.2, we obtain ` [ϕ′]p↔ t([ϕ′]p).

(v) ϕ is [ϕ′](ϕ′′ → ϕ′′′). Very similar to above, but using Distribution[·],
item 3 of Lemma 4.8, and Definition 4.2.

(vi) ϕ is [ϕ′]Kiϕ′′. Very similar to above, but using Knowledge[·], item 4
of Lemma 4.8, and Definition 4.2.

(vii) ϕ is [ϕ′]∀xϕ′′. Very similar to above, but using Barcan[·], item 5 of
Lemma 4.8, and Definition 4.2.

(viii) ϕ is [ϕ′][ϕ′′]ϕ′′′. Very similar to above, but using Composition[·],
item 6 of Lemma 4.8, and Definition 4.2. �
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Completeness result for QKn
[.] now follows straight from previous definitions

and lemmas.

Theorem 4.10 (Completeness of QKn
[.]) Let ϕ be any formula in LnK[.] that

is also theorem of QKn
[.]. Then, ϕ is valid in the class of all epistemic frames.

That is:

If � ϕ, then ` ϕ.

Proof. Suppose � ϕ. Since QKn
[.] is sound, we have, by Lemma 4.9, that �

ϕ↔ t(ϕ). Then, it’s easy to see that � t(ϕ). By Definition 4.2, t(ϕ) belongs to
LnK and doesn’t contain any public announcement operators. We already know
that we are dealing with exactly the same epistemic models used for QKn

(a K-style first-order static epistemic system), and that semantic conditions
for formulas of LnK[.] without announcement operators are exactly the same as
LnK’s. Then, as QKn can be proven complete w.r.t. the class of all epistemic
frames,11 and from step � t(ϕ) above, we conclude that QKn contains ` t(ϕ)
as theorem. Recall that QKn

[.] is clearly an extension of QKn, and this entails

that ` t(ϕ) is also theorem of QKn
[.]. At last, from ` ϕ↔ t(ϕ) being theorem

of QKn
[.], we conclude that this is also the case with ` ϕ. �

For reasons of space, we won’t prove the next theorem, but its proof is
straightforward, applying the same strategy above, and changing only the rel-
evant systems and classes of epistemic frames.

Theorem 4.11 (Completeness of QKTn
[.], QKT4n[.] and QKT5n[.]) The ax-

iom systems QKTn
[.], QKT4n[.] and QKT5n[.] for FOPAL are complete w.r.t., re-

spectively, the class of all reflexive epistemic frames, the class of all reflexive
transitive epistemic frames, and the class of all reflexive euclidean epistemic
frames. In other words, in each of the cases above, for any formula ϕ in LnK[.]:

If � ϕ, then ` ϕ.

5 Future research

As discussed in literature, reduction axioms as a strategy for completeness
won’t work for any formulation of propositional PAL. For example, if we add
an epistemic operator for common knowledge, it can be proven that fragments
of this extended language can’t be successfully reduced to a static formulation
[4, p.231]; i.e., the former language is more expressive than the latter, when

11See, for example, [16, ch.3].
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they are interpreted in the same class of models. Of course, as explained in the
introduction, if we wanted to include common knowledge operators in FOPAL,
we’d have to sacrifice completeness; however, a desirable improvement would
be providing other complete axiom systems with greater expressivity (even
without common knowledge operators), whose completeness obviously couldn’t
rely on reduction strategies to static systems. Another important improvement
would be the inclusion of individual constants, dealing with the corresponding
complications in the proof of metatheorems.

References

[1] J. van Benthem. Logical Dynamics of Information and Interaction. Cam-
bridge University Press, 2011. ISBN 9781139500463.

[2] W.A. Carnielli and C. Pizzi. Modalities and Multimodalities, volume 12
of Logic, Epistemology, and the Unity of Science. Springer-Verlag, 2008.
ISBN 0792353358.

[3] G.E. Hughes and M.J. Cresswell. A New Introduction to Modal Logic.
Routledge, 1996. ISBN 0415126002.

[4] H. van Ditmarsch; W. van der Hoek and B. Kooi. Dynamic Epistemic
Logic (Synthese Library). Springer, 2007. ISBN 1402069081.

[5] M. Fitting and Richard L. Mendelsohn. First-Order Modal Logic (Synthese
Library). Springer, 1998. ISBN 0792353358.

[6] J. W. Garson. Quantification in Modal Logic Handbook of Philosophical
Logic: Volume II: Extensions of Classical Logic (p.249-307). Reidel, 1984.
ISBN 9789400962613.

[7] J. Gerbrandy and W. Groeneveld. Reasoning about information change.
Journal of Logic, Language and Information, 6(2):147169, 1997. ISSN
0925-8531.

[8] J. U. Hansen. A Hybrid Public Announcement Logic with Distributed
Knowledge. Electronic Notes in Theoretical Computer Science, 273:33-50,
2011. ISSN 1571-0661.

[9] D. Harel; D. Kozen and J. Tiuryn. Dynamic Logic (Foundations of Com-
puting). The MIT Press, 2000. ISBN 0262082896.

[10] W. Holliday; T. Hoshi and T. F. Icard, III. A Uniform Logic of Information
Dynamics. Advances in Modal Logic 9. College Publications, 2012. ISBN
9781848900684.



First-Order Extensions for Public Announcement Logic 359

[11] W. Holliday; T. Hoshi and T. F. Icard, III. Information dynamics and
uniform substitution. Synthese, 190(1):31-55, 2013. ISSN 0039-7857. DOI:
10.1007/s11229-013-0278-0.

[12] K. Kishida. Public announcements under sheaves. In New Frontiers in
Artificial Intelligence (Lecture Notes in Computer Science), 7856:96–108,
2013. ISBN 9783642399305.

[13] M. Ma. Mathematics of Public Announcements. Proceedings of the
Third International Conference on Logic, Rationality, and Interaction
(LORI’11). p.193–205. Springer-Verlag, 2011. ISBN 9783642241291.

[14] M. Ma; A. Palmigiano and M. Sadrzadeh. Algebraic semantics and model
completeness for intuitionistic public announcement logic. In Annals of
Pure and Applied Logic, 165(4):963–995, 2014. ISSN 0168-0072.

[15] J. Plaza. Logic of public communications. Synthese, 158:165–179, 2007.
ISSN 0039-7857

[16] M. K. F. Pereira. Extensões de primeira-ordem para a Lógica do Anúncio
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